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Our analysis of 18th and 19th century cannon firings shows that knowledge of sphere 
drag can be substantially extended into the region of 0.3 < ill, < 2.0 and Rema up to 
10’. Bashforth’s chronographic measurements (1868) are of a quality comparable to 
modern measurements. The data of Mayevski (chronograph, 1868), Hutton (ballistic 
pendulum, 1787-1791), and Didion (ballistic pendulum, 1839-1840) are of lesser 
accuracy but in agreement with Bashforth’s. These cannon data are combined with 
modern data to provide the most extensive curves available of C, vs. Rerna in this 
region. Interesting features of these curves for Mw < 1.0 are briefly described. 

1. Introduction 
A review of the readily available literature revealsthat, of the few studiesof sphere 

drag in the transonic, high Reynolds number flow regime, most have been carried 
out in aeroballistic ranges (Bailey & Starr 1976; Charters & Thomas 1945; May & 
Witt 1953; Short 1967; Stilp 1965). In  general, the operational characteristics of these 
ranges limit the maximum operating pressure to approximately 101 kPa (760 t ~ r r )  
and the maximum model size to 50 mm in the transonic speed region. Consequently, 
the maximum obtainable Reynolds number in ranges is limited to values on the 
order of 106. 

Naumann (1954) has made measurements of sphere drag in a wind tunnel a t  Mach 
numbers up to 0.9 a t  Reynolds numbers up to 6 x  lo5. These results are in good 
agreement with the above-mentioned aeroballistic range data. Thus, in the transonic 
speed regime, contemporary measurements of sphere drag are limited to Rewd < lo6 
as noted in the six references cited above. 

The lack of data in this interesting Mach and Reynolds number regime suggested a 
consideration of air resistance measurements made when cannonballs were still of 
major though declining importance in artillery. An examination of old ballistics text- 
books (Ingalls 1886; Mayevski 1872) yielded sketchy descriptions of several extensive 
sets of cannon firings for 50mm (Zin.) to 230mm (gin.) diameter spheres in the 
transonic speed regime (Bashforth 1870, 1881, 1890; Didion 1857, 1860; HBlie 1884; 
Hutton 1812; Ingalls 1886; Mayevski 1872; Robins 1742). I n  order to determine the 
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accuracy of drag coefficient values from these experiments, it  was necessary to obtain 
copies of the original detailed reports. This proved to be a difficult task, but such 
detailed reports of three of these studies have been found (Bashforth 1870, 1881, 
1890; Didion 1857, 1860; Hutton 1812). A review of them convinced us that these 
systematic and carefully controlled studies of the performance of spherical cannon 
shells could yield useful information concerning sphere drag. 

There are a number of reasons why these measurements have been overlooked in 
comparatively recent studies of sphere drag (Bailey & Starr 1976; Charters & Thomas 
1945; May & Witt 1953; Naumann 1954; Short 1967; Stilp 1965). (1) The early 
measurements were obtained from cannon firings in the 18th and 19th centuries in 
the course of tests to evaluate the artillery of that time. (2) The experimental results 
were presented in terms of coefficients that are no longer used. (3) The documents 
describing these experiments have long been out of print. 

The purpose of this paper is (1) to examine these early data, (2) to show that much 
of the data confirm modern measurements in regions of overlap, (3) to use the best 
of the data to extend our knowledge of transonic sphere drag into regions of higher 
Reynolds numbers, and (4) to sketch a little of the historical background. 

2. Techniques of early air resistance measurements 
The performance characteristics of cannon were determined by measuring the 

projectile velocity near the muzzle and its subsequent decay with distance from the 
muzzle. Two techniques were developed to accomplish this. 

In  early studies of cannon performance (Hutton 1812; Didion 1857), a ballistic 
pendulum was located a t  various distances from the gun muzzle, and cannon shells 
were fired into it. The velocity of the shell at  the pendulum could be calculated from 
a knowledge of the mass of the shell and of the mass, inertia, and velocity of the 
pendulum. Implicit in this technique was the assumption that the muzzle velocity 
was repeatable if the same ball weight and powder charge were repeated. 

Towards the middle of the 19th century, a number of electrical chronographic 
timing systems were developed. In  this technique, one measured the times at which a 
cannon shell passed a number of timing stations located at known distances from the 
muzzle. From such measurements, the variation of velocity with distance from the 
muzzle could be derived from a single firing (Rashforth 1870, 1881, 1890; Didion 
1860; Mayevski 1872). 

The main emphasis in the present analysis of these artillery experiments will be 
placed on Bashforth’s studies because they were the most extensive, and his reports 
contained records of all the physical measurements he made. A lesser evaluation has 
been made of the other artillery studies primarily because in many cases the original 
complete data records were not located in the published literature. 

3. Experiments made with Bashforth’s chronograph (1868) 
In  1865, Francis Bashforth, Professor of Applied Mathematics at  Woolwich in 

England, instituted a series of studies with large bore cannons to determine the 
resistance of the air to the motion of spherical and non-spherical projectiles. Bashforth 
concluded that the most accurate method for measuring the variation of projectile 
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velocity withdistance was to determine the time the projectile took to traverse a series 
of successive equally spaced, known distances downrange of the gun muzzle. He further 
concluded that the timing systems available a t  that time (1865) were not accurate 
enough for his studies. Therefore, he designed and built an electrical chronograph 
(figure 1, plate 1). (It is of interest to note that this chronograph is still in existence 
and can be seen a t  the Science Museum, South Kensington, London (V. K. Chew, 
private communication). Bashforth gave the chronograph to the museum in 1876 a t  
the completion of one major phase of his work.) 

Bashforth’s work was generally ignored by most of the ballisticians of his time, 
in part because most of it was published in government reports instead of in the more 
widely distributed artillery journals. There were also those (e.g. Cranz & Becker 1921) 
who considered that his chronograph was a crude device. On the other hand, Ingalls 
(1886) in his review of all of the artillery studies available to him a t  that time stated 
with regard to Bashforth’s work: ‘From the data derived from these experiments he 
constructed and published, from time to time, extensive tables connecting space and 
velocity, and time and velocity, which for accuracy and general usefulness have never 
been excelled.’ Moreover, the fact that Bashforth’s original chronograph was used 
during World War I, 50 years after its design and development, and still ‘worked 
quite satisfactorily’ (British Textbook, 1929) suggests that it was capable of accurate 
timing measurements. Finally, in 1868, a committee was formed to determine (among 
other things) whether Bashforth’s chronograph could measure the small time intervals 
that he claimed. This committee consisted of Prof. J. C. Adams, Prof. C. G. Stokes, and 
Captain A. Noble. It was their considered opinion in 1870 that ‘we do not think that 
any means existed before of recording a number of successive small intervals of time 
with the degree of precision and trustworthiness attained by Prof. Bashforth’s 
instrument’ (Bashforth 1870). 

Bashforth established what must be considered to be the precursor of present day 
aeroballistic ranges. He positioned ten detector screens a t  nine equally spaced distances 
(45*72m, 150ft) with the first one a t  22-86m (75ft) from the muzzle. The effective 
range was thus 434 m (1425 ft). The screens were electrically connected together with 
a current running to the chronograph. When the ball passed through any screen, the 
current was momentarily interrupted. The chronograph consisted of a paper-covered 
drum, kept in rotation by a massive flywheel. A pen holder, which moved downward 
as the drum rotated, contained two pens each connected to a solenoid. One solenoid 
was connected to the circuit containing the screens; the other, to a circuit containing 
a switch actuated by the pendulum of an accurate clock. When the clock switch 
interrupted the current ( I  s interval), the clock pen made a tick mark on the otherwise 
continuous spiral. A similar tick mark was made by the screen pen on its spiral 
whenever the screen current was interrupted. Thus, the distance between screen tick 
marks could be related to actual times by direct calibration against the distance 
between clock tick marks. From the time-distance measurements provided by this 
system, Bashforth was able to determine the velocity and deceleration of a projectile 
as a function of downrange distance. 

Bashforth fired 198 spherical projectiles of 74 mm (3 in.), 125 mm (5  in.), 176 mm 
(7in.), and 225mm (gin.) diameter from smooth bore cannons a t  velocities ranging 
from 220 to 700 m/s. Information on ambient temperature, ambient pressure, 
humidity, average projectile weight, average projectile diameter, the time of passage 



452 D.  G .  Miller and A .  B.  Bailey 

through each of the ten screens, and the average velocity at the mid-point between 
each of the screens is contained in Bashforth (1870). Moreover, for each of the above 
diameters he fired hollow and solid spheres to determine the effect of sphere weight 
on deceleration for a constant diameter projectile. Bashforth did not list the weight 
and diameter of individual rounds. However, in light of his demonstrated thorough- 
ness in other matters, it  is reasonable to assume that round-to-round variations in 
weight and diameter were so small that he ignored them. 

From an analysis of differences of his distance-time measurements, Bashforth 
concluded that time could be written as a fourth degree polynomial in distance. From 
this assumption, he was able to  determine the velocity and deceleration at any point 
of the projectile’s trajectory. Knowing the deceleration, he was able to calculate the 
resistance to motion of the projectile, which, in keeping with the theories of that time, 
he assumed to follow a velocity-cubed law. His resistance coefficient, Kt,, was referred 
to a standard air density, which was 1.2143 and 1.226kg/m3 in his 1870 report and 
1890 revision, respectively. Furthermore, he recognized that, since K, was a function 
of velocity, the cubic law could not be applicable for a wide range of velocities. I n  the 
years following 1870, Bashforth conducted a complete review of these firings and 
concluded t,hat his timing system was more accurate than he had originally thought. 
Consequently, he published a complete revision of his earlier values of K, in 1890 
based on times now reported to five decimals (Bashforth 1890). It can be shown that: 

lo9 dv 
144d2v3 dt’ K, = -- 

where w represents weight (lb or kg) and d diameter. Consequently, 

where, to be consistent with Bashforth’s English units for K,, the velocity v must be 
in ft/s and the density of air pair in lb/ft3. Thus for the 1870 and 1890 tabulations the 
drag coeficient C, = 4.838 and 4.805 x 10-6Kt,w, respectively. 

Explicit in Bashforth’s analysis is the assumption that Kt, is a function of velocity 
only and is not dependent upon the size of the spherical shell. While such an assump- 
tion is valid a t  supersonic speeds, it  is not necessarily true for spheres a t  subsonic 
speeds a t  high Reynolds numbers. Moreover, Bashforth and other ballisticians of the 
time had quite strong preconceived ideas as to how K,  should vary with velocity. 
Consequently, there was a tendency to ignore or average in those measurements that 
did not support their assumptions. 

For historical perspective, we note that the classical (19th century) ballistic hypo- 
theses were that the effect of air resistance on a projectile is ( 1 )  a function of the 
projectile’s velocity, (2) proportional to the square of its diameter, (3) inversely 
proportional to its weight, (4) proportional to the air density, and (5) proportional 
to a shape factor that is independent of the velocity. Indeed Bashforth’s experiments 
for spheres and ogive-cylinder shells (Bashforth 1881, 1890) largely provided the basis 
for these hypotheses. Although spheres compared to ogive-cylinder projectiles clearly 
did not have a constant shape factor, hypothesis (5) is nearly true for comparisons 
among the rather similar ogive-cylinder shapes of 19th century artillery and small 
arms projectiles. Moreover, Reynolds number effects are somewhat smaller for 
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ogive-cylinder shapes, so that the dZ hypothesis is quite adequate for them. However, 
the somewhat larger Reynolds number effect for spheres, which is the focus of our 
interest, was ignored by Bashforth owing to his preconceived view favouring hypo- 
thesis (2). 

It was believed that Bashforth’s measurements warranted an independent analysis 
because they could contain information on the drag of spheres a t  subcritical, critical, 
and supercritical Reynolds numbers a t  high subsonic speeds. This flow regime is 
characterized by a lack of modern experimental data. 

Bashforth’s original 1870 report contained complete tabulations of (1)  time and 
distance, and (2) velocity and distance for all 198 rounds. The velocities were obtained 
by dividing the distance between the timing stations by the time taken to  traverse 
this distance. These velocities were tabulated as a function of the mid-point distance 
between the timing stations. Now the drag experienced by any projectile can be 
expressed in the following manner: 

or 

Bp,,, V2SCD = - w dvldt ; 

gpair V 2 X C D  = - wv dvlds;  

where S is &id2 and s is distance. Therefore, 

2w dv 
pair v2S dt ’ 
2w l d v  c -- 

c D = - - -  

- ps,,S’v a s -  

(3) 

(4) 

Bashforth obtained values of v and dvld t  by expressing time as a fourth degree 
polynomial in distance: 

hence, 

and 

t = u, s + a2 s2 + a3 s3 + a4s4; 

v = (a,, + 2a2 s + 3a3 82 + 4n4 s3)-I 

(7)  

(8) 

(9) 
dv - = - ( ~ c L ~ + ~ u , s + ~ ~ u , s ~ ) v ~ .  
dt 

In the present analysis, least squares fits have been madeof ( 1 )  timeas a fifth degree 
polynomial in distance, and (2) mean velocity as a second degree polynomial in 
distance. The latter is equivalent to  t being a third degree polynomial in distance. An 
example of drag coefficients derived from the velocity-distance relationship is given 
in figure 2 for the 74 mm (3  in.) diameter hollow shell. The spread in this experimental 
data is characteristic of that for all shell diameters. A summary of the mean curves 
fitted to the experimental data is presented in figure 3. 

It is apparent from figure 3 that there is little to choose between the above data 
fits and those derived from Bashforth’s K,, values. Therefore, the data obtained from 
v as a quadratic in s have had a smooth line drawn in by eye for each diameter. Points 
from these lines have been used to summarize C ,  as a function of Reynolds and Mach 
number in figure 4. Other Reynolds number portions of figure 4 have been constructed 
from the previously mentioned range and wind tunnel data (Bailey & Hiatt 1971; 
Bailey & Starr 1976; Charters & Thomas 1945; May & Witt 1953; Naumann 1954; 
Short 1967; Stilp 1965). 
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As noted earlier, there is no direct means for determining the accuracy of Bashforth’s 
chronograph. However, there is an indirect method. The results presented by Bailey 
& Hiatt (1971) indicate that, for M, 2 1.6 and Reaod 2 lo5, sphere drag appears to be 
constant with further increases in Reynolds number. Because Bashforth’s values are 
in good agreement with the Bailey & Hiatt data in this Mach and Reynolds number 
regime, it can be assumed that Bashforth’s measurements of diameter, weight, 
temperature, humidity, pressure, distance, and time are of a quality comparable to 
that which exists for modern measurements in this same flight regime. However, we 
note that some of Bashforth’s rounds are characterized by drag values that vary in 
an unrealistic manner with Mach number. These rounds, together with those where 
timing values were obtained for five or fewer stations (43 altogether), were not con- 
sidered in the present analysis. Although C, is shown in figure 4 to be invariant with 
increase in Reynolds number for R,, > 106 and M, > 0.9, it should be noted that the 
225 mm data indicate possible decrease in C ,  with increasing Remd. 

Sphere drag measurements obtained by Naumann (1954) a t  high subsonic Mach 
numbers in a wind tunnel are in good agreement with figure 4 and with the results 
obtained in free flight. Of particular interest is the good agreement between these 
two sets of measurements a t  M, = 0.7 where, a t  approximately the same Reynolds 
number, they both show a rapid decrease in drag with increasing Reynolds number. 
At lower Mach numbers, a decrease in drag of this type has been associated with a 
change in the flow over the sphere from laminar t o  turbulent. 
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Diameter = 225 mm r 

/ 
0 

/ 

Diameter= 125 m m  

FIGURE 3. A comparison of data reduction methods for Bashforth's sphere measurements (---, 
derived from a 5th degree fit to tabulated values of distance and time t = a, 8 + . . . + a5 s5; - * - ., 
derived from Bashforth's tabulated K ,  values based on t = a, s + ... a, s4; ---, derived from a 
2nd degree fit to tabulated values of velocity and time - equivalent to t = a, 8 + . . . + aa sS). 

4. Metz chronograph experiments (1856-1858) 
The results of a French investigation carried out in 1856, 1857, and 1858 at Metz 

using an electro-ballistic pendulum designed by Captain Navez of the Belgian Artillery 
are described briefly by Ingalls (1886), Didion (1857, 1860) and Mayevski (1872). 
With this device, it  was possible to measure the velocity a t  two points on the trajectory 
of each round. A 22 cm howitzer and 8 and 24 lb cannon were used to launch spherical 
projectiles having diameters of 220, 100, and 148 mm, respectively, a t  velocities 
ranging from 190 to 550m/s. From a more detailed summary, presented by HBlie 
(1884) of the ten 148mm projectile firings, it appears that between 8 and 30 shots 
were fired for each ball weight and powder charge. Three values of C, calculated 
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Mach 
number, 
M -  

1.4-1’8 

- 
1 o4 105 106 107 

Reynolds number, Read 
FIGURE 4. Summary of sphere drag measurements at  high Reynolds numbers: (a)  2.0 < M,  6 3.0, 
and ( b )  0.2 < M ,  < 1.8 (curve is in two parts because Cb reaches a maximum between M, = 1.6 
and 1.8). 

directly from HBlie’s tabulations of velocity as a function of distance are not consistent 
with C, calculated from HBlie’s calculated drag function. Moreover, these 148 mm 
data are largely inconsistent with C, calculated from the drag function tabulated in. 
Mayevski’s summary for this size. Values of C, for the 148mm diameter projectile 
calculated from HBlie’s velocity-distance tabulation are given in figure 5 ,  along with 
the data for the 100 and 200mm diameter projectiles calculated from Mayevski’s 
summary. 

Because most of the results obtained using the Navez device are in poor agreement 
with Bashforth’s measurements for 1.1 < M < 1.6, i t  has been concluded that this 
electro-ballistic pendulum was not accurate enough for cannon performance studies at 
high speeds. However, the electroballistic pendulum may give reasonable values for 
M, < 1.1. 
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FIQUR.E 5 .  Metz sphere drag measurements obtained with the Navez chronograph, 1857-1859. 
Diameters (mm) are: 0, 148 (HBlie 1884); A, 220 (Mayevski 1872); 0, 103 (Mayevski 1872); 
--, 148 (from figure 3). 

5. Mayevski experiments (1868) 
The Russians suspected problems with the 1856-1858 Metz experiments. Con- 

sequently, Mayevski (1872) conducted a series of tests a t  St Petersburg in 1868 with 
spherical projectiles ranging in size from 91 to 244 mm at speeds ranging from 227 to 
527 m/s. He used two Bouleng6 chronographs to measure the velocity, one a t  each 
of two points on the trajectory separated by a known distance. Mayevski fired at  least 
eight shots for each ball weight and powder charge, and his final results are presented as 
averages of the firings. Because individual firing data are not available, it  has not 
been possible to determine the degree of scatter of the measurements. Mayevski's air 
resistance coefficients have been converted to C, and are presented as a function of 
Mach number in figure 6. Also shown in this figure are the values derived from figure 4. 
The good measure of agreement between these data and figure 4 indicates that the 
Boulengb chronograph is capable of making accurate measurements of velocity and, 
hence, sphere drag coefficients. 
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FIQURE 6. Mayevski sphere drag measurements obtained with the Bouleng6 chronograph, 1868 
(Mayevski 1872). Diameters (mm) are: 0 , 9 1 ;  0, 148; 0 . 2 4 4 ;  -, 148 (from figure 3). 

6. Experiments made with the ballistic pendulum 
6.1. Robins 

Robins' invention of the ballistic pendulum led to the first air resistance measurements 
during 1740-1742 (Robins 1742). His results for i9mm (iin.)  musket balls weighing 
about 28 g showed the characteristic increase in drag in the velocity of sound region, 
and proved that the Newtonian 212 law was not correct near and above sonic velocity. 
These pioneering results are too inaccurate for our use. 

6.2. Hutton 
Hutton (1812) improved the design of the pendulum, and during 1775-1791 carried 
out cannon firings using balls of 50mm (zin.), 71 mm (2.8in.), and 90mm (36in.) 
weighing 450-275Og with muzzle velocities from 91 to 630m/s. In  this paper, we 
concern ourselves with his ballistic pendulum experiments carried out in the years 
1787-1791. His reports (Hutton 1812) are very detailed and contain sufficient in- 
formation to determine the variation of projectile velocity with distance from the 
muzzle. This variation together with a knowledge of the projectile weight, projectile 
diameter, ambient temperature, and ambient pressure make it possible to calculate 
the variation of drag coefficient with distance. 
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FIQURE 7. Sphere drag measurements obtained with Hutton’s ballistic pendulum (Hutton 1812). 
DiametsrS (mm) are: 0, 60 (1787); D, 50 (1788); 0, 71 (1789); A, 90 (1791); -, 50 (from 
figure 3). 

Cannon performance in Hutton’s time was characterized by the poor repeatability 
of muzzle velocity for the same powder charge and ball weight. After much experi- 
mentation, he found that a major reason for this poor repeatability was the poor 
reproducibility of the black powder. He devised a means of producing black powder 
charges of repeatable quality, resulting in a significant reduction in the spread of the 
muzzle velocity from a given powder charge and ball weight. 

Hutton’s procedure was to  fire the same charge weight and ball weight, but with the 
pendulum successively a t  several distances increasing from 9.14 m (30 f t )  to 109.73 m 
(360ft). At each distance, several repeat shots were fired to average out the un- 
certainty in the pendulum measurements and in the muzzle velocity. The results gave 
velocity as a function of distance for an unmeasurable but approximately constant 
muzzle velocity. Then the powder charge was changed, and the procedure repeated. 
In this way, velocities were measured between 91 and 63Om/s (300 and ZOOOft/s). 

In the present analysis, the average velocity was plotted as a function of distance 
from the gun muzzle for each powder charge. A linear fit was made to this velocity- 
distance variation, and the drag coefficient determined using equation (6). The 
velocity drop for a number of the test conditions is so large that it is not correct to 
assume a linear variation of velocity with distance. However, it  was believed that the 
quality of the average velocity measurements was not sufficiently good to warrant 
fitting them to a higher-order polynomial. 

The results of the present linear analysis are shown in figure 7. It can be seen that for 
0.8 < A&, < 1.6, these results are characterized by a comparatively small degree of 
scatter and are in reasonable agreement with figure 4, which is based primarily on 
Bashforth’s values. For lower speeds (Moo < 0.8), the variation of CD with H, is in 
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only fair agreement with figure 4, but is qualitatively similar. Moreover, this vanation 
of C, with M, is characteristic of that which would be expected as the flow over the 
sphere changes from laminar to turbulent. 

Didion (1857) made an extensive analysis of Hutton’s work. As a result of the 
studies a t  Metz, 1839-1840 (Didion 1857) described below, Didion became concerned 
with the effects of (1) the muzzle gas impinging on the pendulum, and (2) the curvature 
of the projectile’s trajectory due to  the effect of gravity. Didion recalculated Hutton’s 
work taking these two factors into consideration and tabulated these values (Didion 
1857). Didion’s recalculated resistance coefficient values have been transformed into 
CD values. For M, 3 1.0 his values are in reasonable agreement with ours, whereas 
for M, < 1.0 his values are somewhat higher than the results of the present analysis. 
The corrections for muzzle gas effects and trajectory curvature are not large enough 
to account for these differences. The present analysis wouldindicate that the corrections 
used by Didion were not really warranted by the quality of the basic data. Our analysis 
does have an element of subjectivity in determining best how to fit a straight line to 
the velocity-distance values. However, the uncertainty in making this fit is not large 
enough to produce values of C, comparable to those derived from the Didion analysis 
(Didion 1857). 

6.3. Didion 
Didion (1857) also reported on an extensive ballistic pendulum study a t  Metz (1839- 
1840) on the performance of 103, 118, 148, and 220mm diameter spherical shells for a 
range of powder charges. This study was not as well designed as Hutton’s, because for 
most of these experiments the velocity was measured a t  only two locations downrange. 
Many shots were fired for each powder charge and ball diameter, so that a reasonably 
accurate average velocity measurement was obtained at  each pendulum position. 
Drag coefficients calculated from a knowledge of the velocity drop between the 
pendulum stations using equation (6) are shown in figure 8. Twelve of the fifteen 
data points shown are in good agreement with the values derived from Bashforth’s 
data (figure 4).  It can be shown that the present results, which do not contain correc- 
tions for muzzle gases and trajectory curvature, are in good agreement with Didion’s 
values, which do (Didion 1857). This suggest’s that Didion’s corrections are of limited 
importance for these experiments as well as for Hutton’s. 

7. Conclusions 
It is apparent from the preceding discussion that, regardless of the technique used 

to determine cannon performance, the resulting values of sphere drag coefficient are 
characterized by an uncertainty of at  least +_ 5 percent. Contemporary measurements 
of sphere drag coefficient for spheres ranging in size from 30 to 50 mm are summarized 
in figure 9. It is readily apparent that these measurements are also characterized by a 
comparable degree of scatter. 

It has been shown that the sphere drag values derived from Bashforth’s extensive 
cannon firings are self-consistent and are consistent with comparable measurements 
made at  lower Reynolds number in aeroballistic ranges. However, modern sphere drag 
measurements in the Mach number range 0.3-2.0 have been limited to Remd < lo6. 
The present study shows that Bashforth’s experiments can extend this Reynolds 
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FIUURE 9. Summary of modern 30-50mm diameter ballistic range data. Diameters (mm) are: 
0 ,  30-50 (Stilp 1965); m, 38 (Charters & Thomas 1945); +, 41 (Short 1967); A, 38 (Bailey & 
Starr 1976). 
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FIGURE 10. Variation of drag coefficient with Maoh number 

for various diametera at atmospheric pressure. 

number range to approximately 10’. This study also provides unique information on 
the drag of a sphere a t  high subsonic Mach numbers when the flow over the sphere is 
turbulent. Moreover, an analysis of all the readily available cannon data obtained 
in the 18th and 19th centuries has shown that sphere drag coefficients derived from 
ballistic pendulum techniques or chronographic timing systems, with the exception 
of the Navez results obtained at Metz (1858-1859)) are in agreement with the more 
extensive results obtained with Bashforth’s chronograph. 

Results of our analysis of Bashforth’s cannon firings together with modern data 
have been used to construct figure 4. To our knowledge, this is the most complete 
summary of C ,  as a function of Remd for Mach numbers ranging from 0.1 to 3.0. Values 
of C, for 2 < M, < 3 have been plotted on a separate insert in figure 4 to avoid 
cluttering the graph. 

As indicated in earlier work and confirmed here, for M, < 1 , figure 4 shows a marked 
dip in Remd ranges, which correspond to 25-30mm (2-4in.) diameter spheres at 
atmospheric pressure. Note that this dip gets smaller and levels out as sonic velocity 
is approached. 

Figure 10 shows C ,  vs. M, taken from figure 4 to correspond to drag a t  atmospheric 
pressure for various diameter spheres. Between 12.5 and 25mm diameter, C, is 
essentially independent of size. The 200 mm diameter curve is about the same as the 
one for 12.5-25mm down to the lowest M, available. However, a t  intermediate 
diameters, there are very striking differences, as much as a factor of 2 in C, from 
0.2 6 M, 6 0.8. Although not shown in figure 10, the curve for d = 2-5 mm is system- 
atically lower than for the 12.5-25mm curve by about 0-06-0.1 in C,. Such Reynolds 
number effects are very much less for ogive-cylinder or cone-cylinder projectiles. The 
substantially lower drag of intermediate-sized spheres implies, in the terms of a 19th 
century artilleryman, that such cannonballs (2-4 in.) carry farther than expected 
compared to musket balls (0.5-0.75in.) even when the distance is scaled ‘properly’ 
by the 19th century ballistic scaling factor w/d2.  
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Note that data are still lacking in the important region where the curves in figure 4 
are changing rapidly or in figure 10 show such large differences; namely, where 
M, < 1 and the diameter is 25-225mm (1-gin.). However, the operational char- 
acteristics of existing wind tunnel and ballistic range facilities are such that sphere 
drag measurements cannot be made a t  the high Reynolds numbers characteristic of 
these mid-19th century cannon firings. Should the need arise to confirm these cannon 
firings or to extend the results into the interesting region noted above, a free air range 
of the type established by Bashforth with modern timing, surveying, and detecting 
techniques would be appropriate. 

We are indebted to Sandy Love and Mary Allen of the L.L.L. Library for their 
perseverance in obtaining the rare 18th and 19th century documents. We would also 
like to credit the genius and ability of those 18th and 19th century ballisticians, such 
as Bashforth, Mayevski, Didion and Hutton. Their reputations may have faded with 
time and circumstance, but their experimental work has not. 

This work was performed under the auspices of the U.S. Department of Energy 
by the Lawrence Libermore Laboratory, under contract number W-7405-Eng-48. 
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